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Relaxation properties of small-world networks
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Recently, Watts and Strogatz introduced the so-called small-world networks in order to describe systems that
combine simultaneously properties of regular and random lattices. In this work we study diffusion processes
defined on such structures by considering explicitly the probability for a random walker to be present at the
origin. The results are intermediate between the corresponding ones for fractals and Cayley trees.
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[. INTRODUCTION ing connected symmetrically to itkhearest neighbors, i.e.,
having as coordination number 2k. Then we add to each
Networks of the real world often seem to combine aspect®f the sites a new bond with probabilipy The other end gets
from regular and completely random lattices. Social netattached with equal probability to any of the lattice sites; this
works, neural networks, electrical power grids, and trafficalso allows the possibility of vertices to become connected to
networks[1—3] are all examples of patterns not describedthemselves. In this way we add, independentobn the -
satisfactorily by conventional regular lattices, nor by com-averagepL new bonds to the underlying regular lattice. This
pletely random lattices. Social structures, for instance, do ndtonstruction follows[7] for k=1 and is simpler than the
behave as regular lattices, sir@s is well knowp randomly ~ °riginal procedure{1], by which one rewires each of the
chosen people are connected in general by a small number 8figinal kL bonds randomly with probabilitp. .
intermediary bilateral ties. Here, as in random graphs, the A stepwise diffusion process is now defined by specifying
minimal (chemical distance between any two points in the QII the transition probabilitie8V; ; entering the master equa-
system scales logarithmically with the system dizg tion:
To combine these two properties, Watts and Strogatz re-
cently introduced the idea of small-world netwofl3. This P(i,n+1)—P(i,n)=2> W, ;P(j,n)—P(i,n) > W,,.
construction is a superposition of a regular lattice on a ran- ! !

dom lattice, and includes simultaneously well defined local @
clusters and short global connections. As we will demon-They; ; is the probability of going from siteto sitef during
strate, these systems also display properties intermediate bgne time step, and the probabil®(i,n), i=1, ... L is just

tween those of regular and treelikieopless lattices, even the probability of being at siteafter thenth step. The pro-
under a small number of global connections, provided thgess defined in Eq(l) is the discrete-time variant of diffu-
system size is large enough. ] sion on an arbitrary lattice, a topic interesting in its own
Much work has already been done on the properties ofignt. Diffusion on regular lattices is ubiquitous, and diffu-
small-world netWOfkil,z,S—lq- but most of it has focused sion on random graphs h&among other thingsalso been
on static(geometri¢ properties. We shall not address thesestydied in the context of glassy relaxatids]. We are there-
issues, but rather concentrate odymamicalmodel defined  fore inspired to investigate what happens on the small-world
on the structure. Treatments of the dynamics of small-worldnodel, which interpolates between these two extremes. Pre-
networks include, for instance, the study of an Ising model;jpoysly a lot of interest has also been seen in the related
defined on the lattic¢5], spectral properties of the small- problem of diffusion on fractalésee, for example,16—19
world Laplacian[6], percolation[7], spreading of diseases an( references thergims we proceed to show, diffusion on
[8], and neural networki®]. In the following we will exam-  cayley treed20-2 also shows features closely related to
ine the properties of random walks on small-world networks ihe present problem. Furthermore, the motion of charge car-
in particular, the relaxation, exemplified by the probability riers or of excitons over polymer chains, where steps be-
for a random walker to be at the original site at a later timeyyeen spatially close sites can connect regions far apart

This is a simple quantity to extract numerically, and very gjong the chemical backbone, also involves global shortcuts
relevant for various physical properties: It is sensitive to thg23 24,

topology of the network and is related to its vibrational  The transition probabilitiesV; ; in Eq. (1) are as follows.

modes. First W, ;=0 if there are no bonds betweérandj. For i
connected tg by one or more direct bondsy; ; is propor-
Il. DEFINITION OF THE MODEL AND PRESENTATION tional to the number of such bonds. The same holds for the
OF THE RESULTS probability of remaining at the same site after one time unit,

i.e., we allow “sticking.” Formally

The small-world networks we consider are built as fol-
lows: We start from a regular lattice with vertices in one it S
dimension under periodic boundary conditions, each site be- Mozl
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FIG. 1. The relaxation or probability of presence at the origin  FIG. 2. Plot ofP,(0)— P..(0) as a function oh, the number of

Pn(0) as a function of number of steps fpr=0.05 and several time steps fop=0.05 andL as in Fig. 1. The curves fall nicely on
system sized., which from upper to lower right are=1000, L a master curve.

=2000, L =5000, and. =10 000.

replot P,(0)—P.(0) in Fig. 2. From Fig. 2 we see that all

In this equationg; ; is the number of bonds between the two curves collapse nicely onto what we view as representing
sitesi andj, andz; is the total number of bonds emanating p_(0) on small-world networks in the limit —o. Both

from vertexi, i.e., the coordination number of the site. HenceFigs. 1 and 2 display initially a quasilinear decay on the
zi=%,z; ;. Note that thez ; values are determined by the chosen double-logarithmic scale, and this may be viewed as
additional wiring as well as by the underlying lattice. The being an approximate power-law decay. Depending,che
di,; and the 1 in the denominator appear because we allowxponents range from around0.5 for the smallesp to
for the possibility of the walker to remain at siteluring a  around — 0.6 for the largest. This regime is followed by a
time step. This procedure renders the numerically detersteeper decay at larger To highlight the power-law char-
mined P(i,n) smoother inn. We remark that the rates de- acter we have plotted in Fig. B,(0) for p=0.01. As is
fined according to Eq2) are not symmetrical inandj, i.e.,  evident from the figure, the power-law domain extends well
in generalW, ;#W, ; . over two orders of magnitude in

The algorithm we have used is the exesllular automa- The results can be understood qualitatively in the follow-
ton) enumeration of random walk48], corresponding to the ing way. For a fractal one h4&5]
implementation of Eq(1). All the results plotted are aver-

aged over 200 disorder configurations. We have worked Pn(0)~n‘ds’2, (4)
mostly with the valu&k=1. This is also the value implied if
we do not state otherwise. whereds is the spectral dimension. Thus the initial decay in

We focus on the probabilit@(i,n|i,0) that a particle ini- Figs. 1-3 follows that of a fractal with ds close to 1, i.e.,
tially at sitei is found at the same site just after thi step.  that of a quasi-one-dimensiongjuasi-10 system. This is
In the figures below we pldtP(i,n|i,0)), i.e., the average of reasonable given our construction: for sufficiently snall
P(i,n|i,0) over the different realizations of the small-world @nd smalln, only relatively few random walkers encounter
lattice. Since all sites are equivalent in an ensemble of smalRnY long-range connectiorishortcuty. Therefore in the be-
world networks, this quantity does not depend on the particu-
lar sitei chosen, and we hereafter denote itRy(0). In Fig. ' ' Data for L=1000
1 we have chosep=0.05 and plotted®,(0) on a double- Power law fit
logarithmic scale for system sizes ranging frams 1000 to
L=10000. This allows us to examine the dependence of
P,(0) on the size of the system. 0-1F

From Fig. 1 we infer that initially all the curves fall on
one curve and that for largethey saturate at their respective =
equilibrium values 1/. However, Eq.(2) implies an inho-
mogeneous equilibrium distribution 0.01 |

PY(i)ec(z+1). )

Therefore P(i,~|i,0) depends on the specific small-world 0.001 : s :
realization, and will fluctuate from realization to realization 1 10 100 1000 10000
around its average valuell/ "

To find out how much of the behavior is due to finite size  FIG. 3. P,(0) for p=0.01 as well as a power-law approxima-
effects, we subtract from each average curve in Fig. 1 itsion. The fit in the region 1€t<100 gives as least-squares-fit ex-
corresponding average equilibrium val®e,(0)=1/L, and  ponent—0.52.
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FIG. 4. P,(0)—P-.(0) for p=0.05 andL.=10000 on & semi- 5 |oyer left p=0.01, 0.05, 0.1, 0.2, 0.4, and 0.8. The data for
logarithmic scale. At longer times the decay appears to be slowe< <500 are replotted semilogarithmically in the inset.
than exponential. Also shown is a fit to a stretched exponential,

indistinguishable from the data.

whereC is a constant. Comparing this behavior to that dis-
played in Figs. 1 and 4 we remark that in our case, for a

of the underlying 1D lattice. However for larger the ran-  rq|atively small number of steps, the decay varies approxi-
dom walkers probe larger and larger portions of the graphmately asn~“ with a=1/2, whereas at larger a more ad-

and thus follow more and more shortcuts. This progressivel)équate description would be a stretched exponential

speeds up the decay 8%,(0) as more regions at larger and exp(—Cnf). One may even suspect that the decay in Fig. 4

larger length scales are visited, and the fractal picture is losf -a _
X ys P,(0)~n~*exp(—Crf), as also supported by the
One would thus expect that the concept afebegins t0 be g1 world network spectral densifg]. A fit of the data in

invalid when the random walkers visit enough shortcuts, i'e'Fig. 4 to this functional formkeepinga=0.5 fixed is also

when the 1D diffusion extends farther than the typical dis- hown(with 8=0.56 andC=0.04). We note that a similarly
tance between shortcuts. This is the fundamental length scag%od fit is obtained by settinﬁz 13 (in line with [6]): then
& of small-world networks, in addition to the lattice constant, ,_ 4 1 gndc=053 ’

which is less important here. In our case we have

ginning the behavior oP,(0) closely reflects the character

We now consider the dependence of the decay on the
value ofp. For this we plot in Fig. 5 the decay laR;(0) for
. L =2000 andp ranging fromp=0.01 top=0.8. To bring out
&=p -, (5 the stretched exponential behavior, the data fern@=500
are also displayed semilogarithmically in the inset. We note
measuringé in units of the lattice constant. For diffusion on that the initial power-law-like region diminishes with in-
scales smaller thag one furthermore has in terms of the creasingp. Furthermore, the plateau regid?,(0)=1/L is
diffusion constanD of the regular lattice&>~2Dn, so that  reached earlier for largg. This is in accordance with our
argument above, that the long-range connectishsrtcut$
interrupt the simple diffusion on the underlying lattice, such
N 1 © that the crossover length decreases with incregsimg also
2Dp?

1

Given that we allow random walkers to stay at a site during
a time step,D=1/3 and thusn=2/3p 2. However, some
walkers do encounter shortcuts at length scales bel@av?,
and numerically the crossover to a region that does not have
approximate power-law character is seen to take place earlies
thann~p~2. ot
We turn now to the analysis of this region. To be able to
follow it more closely, we replot the results of Fig. 2 for
=10000 on a semilogarithmic scale in Fig. 4. Evidently, the ~ %90'¢
decay for largen is slower than exponential.
The decay ofP,(0) is hence quicker than a power law,
but slower than that for Cayley trees, for which one tfas 0.0001
coordination numbers greater than [2)1,22

01
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n

FIG. 6. P,(0) plotted forL=2000, p=0.1, andk=1, 2, 3, and
P,(0)~n"32exp—Cn), (7) 4, from right to left.



4408 BRIEF REPORTS PRE 62

Eq. (6)]. As p becomes large enough, the power-law regime Ill. CONCLUSIONS

ess.entlally disappears. This is so because_ the random ngker In this work we have studied numerically the behavior of
rapidly meets a shortcut. As before, the influence of finite

. : A random walks on small-world lattices. Our work has focused
size effects can be reduced by plotting, as in FigP0) on the probability of being at the initial site,(0) as a
—P=(0). ) ) function of the number of steps This quantity is found to
We have also performed simulations of the random walksow a complex, very interesting pattern. Initiafty(0) dis-

on small-world networks where the underlying lattice has a plays a power-law, “quasifractal” regime. At larger a
value larger than 1. In Fig. 6 we plot the results por0.1  quicker decay takes over, reminiscent of stretched exponen-
andL=2000 in the cases df=1, k=2, k=3, andk=4. tjals. In this respect th,(0) decay is intermediate between
The findings reproduce the general pictuRg(0) behaves the decays found for fractal structures and those found for
like a power law for smalh, while decaying more rapidly as treelike (looples$ structures, exemplified here by Cayley

n gets larger. The curves for differektare mainly shifted trees.
with respect to each other, and the network with the largest
coordination numbef(largestk) also displays the quickest
relaxation. It is to be noted, however, that the clasel has

the largest dynamical range and thus best shows the decay The support of the DFG, of GIF Grant No. 10423, and of
forms, while also being the one simplest to implement; hencéhe Fonds der Chemischen Industrie is gratefully acknowl-
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