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Relaxation properties of small-world networks
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Recently, Watts and Strogatz introduced the so-called small-world networks in order to describe systems that
combine simultaneously properties of regular and random lattices. In this work we study diffusion processes
defined on such structures by considering explicitly the probability for a random walker to be present at the
origin. The results are intermediate between the corresponding ones for fractals and Cayley trees.

PACS number~s!: 05.40.Fb, 05.60.2k, 71.55.Jv
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I. INTRODUCTION

Networks of the real world often seem to combine aspe
from regular and completely random lattices. Social n
works, neural networks, electrical power grids, and tra
networks @1–3# are all examples of patterns not describ
satisfactorily by conventional regular lattices, nor by co
pletely random lattices. Social structures, for instance, do
behave as regular lattices, since~as is well known! randomly
chosen people are connected in general by a small numb
intermediary bilateral ties. Here, as in random graphs,
minimal ~chemical! distance between any two points in th
system scales logarithmically with the system size@4#.

To combine these two properties, Watts and Strogatz
cently introduced the idea of small-world networks@1#. This
construction is a superposition of a regular lattice on a r
dom lattice, and includes simultaneously well defined lo
clusters and short global connections. As we will demo
strate, these systems also display properties intermediat
tween those of regular and treelike~loopless! lattices, even
under a small number of global connections, provided
system size is large enough.

Much work has already been done on the properties
small-world networks@1,2,5–14# but most of it has focused
on static~geometric! properties. We shall not address the
issues, but rather concentrate on adynamicalmodel defined
on the structure. Treatments of the dynamics of small-wo
networks include, for instance, the study of an Ising mo
defined on the lattice@5#, spectral properties of the smal
world Laplacian@6#, percolation@7#, spreading of disease
@8#, and neural networks@9#. In the following we will exam-
ine the properties of random walks on small-world networ
in particular, the relaxation, exemplified by the probabil
for a random walker to be at the original site at a later tim
This is a simple quantity to extract numerically, and ve
relevant for various physical properties: It is sensitive to
topology of the network and is related to its vibration
modes.

II. DEFINITION OF THE MODEL AND PRESENTATION
OF THE RESULTS

The small-world networks we consider are built as f
lows: We start from a regular lattice withL vertices in one
dimension under periodic boundary conditions, each site
PRE 621063-651X/2000/62~3!/4405~4!/$15.00
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ing connected symmetrically to its 2k nearest neighbors, i.e
having as coordination numberz52k. Then we add to each
of the sites a new bond with probabilityp. The other end gets
attached with equal probability to any of the lattice sites; t
also allows the possibility of vertices to become connected
themselves. In this way we add, independent ofk, on the
averagepL new bonds to the underlying regular lattice. Th
construction follows@7# for k51 and is simpler than the
original procedure@1#, by which one rewires each of th
original kL bonds randomly with probabilityp.

A stepwise diffusion process is now defined by specifyi
all the transition probabilitiesWi , j entering the master equa
tion:

P~ i ,n11!2P~ i ,n!5(
j

Wi , j P~ j ,n!2P~ i ,n!(
j

Wj ,i .

~1!

TheWf ,i is the probability of going from sitei to sitef during
one time step, and the probabilityP( i ,n), i 51, . . . ,L is just
the probability of being at sitei after thenth step. The pro-
cess defined in Eq.~1! is the discrete-time variant of diffu
sion on an arbitrary lattice, a topic interesting in its ow
right. Diffusion on regular lattices is ubiquitous, and diffu
sion on random graphs has~among other things! also been
studied in the context of glassy relaxation@15#. We are there-
fore inspired to investigate what happens on the small-wo
model, which interpolates between these two extremes.
viously a lot of interest has also been seen in the rela
problem of diffusion on fractals~see, for example,@16–19#
and references therein!. As we proceed to show, diffusion o
Cayley trees@20–22# also shows features closely related
the present problem. Furthermore, the motion of charge
riers or of excitons over polymer chains, where steps
tween spatially close sites can connect regions far a
along the chemical backbone, also involves global shortc
@23,24#.

The transition probabilitiesWi , j in Eq. ~1! are as follows.
First Wi , j50 if there are no bonds betweeni and j. For i
connected toj by one or more direct bonds,Wi , j is propor-
tional to the number of such bonds. The same holds for
probability of remaining at the same site after one time u
i.e., we allow ‘‘sticking.’’ Formally

Wi , j5
zi , j1d i , j

zj11
. ~2!
4405 ©2000 The American Physical Society
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In this equation,zi , j is the number of bonds between the tw
sites i and j, andzi is the total number of bonds emanatin
from vertexi, i.e., the coordination number of the site. Hen
zi5( j zi , j . Note that thezi , j values are determined by th
additional wiring as well as by the underlying lattice. Th
d i , j and the 1 in the denominator appear because we a
for the possibility of the walker to remain at sitei during a
time step. This procedure renders the numerically de
mined P( i ,n) smoother inn. We remark that the rates de
fined according to Eq.~2! are not symmetrical ini andj, i.e.,
in generalWi , jÞWj ,i .

The algorithm we have used is the exact~cellular automa-
ton! enumeration of random walks@18#, corresponding to the
implementation of Eq.~1!. All the results plotted are aver
aged over 200 disorder configurations. We have wor
mostly with the valuek51. This is also the value implied i
we do not state otherwise.

We focus on the probabilityP( i ,nu i ,0) that a particle ini-
tially at sitei is found at the same site just after thenth step.
In the figures below we plot̂P( i ,nu i ,0)&, i.e., the average o
P( i ,nu i ,0) over the different realizations of the small-wor
lattice. Since all sites are equivalent in an ensemble of sm
world networks, this quantity does not depend on the part
lar sitei chosen, and we hereafter denote it byPn(0). In Fig.
1 we have chosenp50.05 and plottedPn(0) on a double-
logarithmic scale for system sizes ranging fromL51000 to
L510 000. This allows us to examine the dependence
Pn(0) on the size of the system.

From Fig. 1 we infer that initially all the curves fall o
one curve and that for largen they saturate at their respectiv
equilibrium values 1/L. However, Eq.~2! implies an inho-
mogeneous equilibrium distribution

Peq~ i !}~zi11!. ~3!

ThereforeP( i ,`u i ,0) depends on the specific small-wor
realization, and will fluctuate from realization to realizatio
around its average value 1/L.

To find out how much of the behavior is due to finite si
effects, we subtract from each average curve in Fig. 1
corresponding average equilibrium valueP`(0)[1/L, and

FIG. 1. The relaxation or probability of presence at the orig
Pn(0) as a function of number of steps forp50.05 and severa
system sizesL, which from upper to lower right areL51000, L
52000, L55000, andL510 000.
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replot Pn(0)2P`(0) in Fig. 2. From Fig. 2 we see that a
curves collapse nicely onto what we view as represen
Pn(0) on small-world networks in the limitL→`. Both
Figs. 1 and 2 display initially a quasilinear decay on t
chosen double-logarithmic scale, and this may be viewed
being an approximate power-law decay. Depending onp, the
exponents range from around20.5 for the smallestp to
around20.6 for the largest. This regime is followed by
steeper decay at largern. To highlight the power-law char-
acter we have plotted in Fig. 3Pn(0) for p50.01. As is
evident from the figure, the power-law domain extends w
over two orders of magnitude inn.

The results can be understood qualitatively in the follo
ing way. For a fractal one has@25#

Pn~0!;n2ds/2, ~4!

whereds is the spectral dimension. Thus the initial decay
Figs. 1–3 follows that of a fractal with ads close to 1, i.e.,
that of a quasi-one-dimensional~quasi-1D! system. This is
reasonable given our construction: for sufficiently smalp
and smalln, only relatively few random walkers encounte
any long-range connections~shortcuts!. Therefore in the be-

FIG. 2. Plot ofPn(0)2P`(0) as a function ofn, the number of
time steps forp50.05 andL as in Fig. 1. The curves fall nicely on
a master curve.

FIG. 3. Pn(0) for p50.01 as well as a power-law approxima
tion. The fit in the region 10,t,100 gives as least-squares-fit e
ponent20.52.
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ginning the behavior ofPn(0) closely reflects the characte
of the underlying 1D lattice. However for largern, the ran-
dom walkers probe larger and larger portions of the gra
and thus follow more and more shortcuts. This progressiv
speeds up the decay ofPn(0) as more regions at larger an
larger length scales are visited, and the fractal picture is l
One would thus expect that the concept of ads begins to be
invalid when the random walkers visit enough shortcuts, i
when the 1D diffusion extends farther than the typical d
tance between shortcuts. This is the fundamental length s
j of small-world networks, in addition to the lattice consta
which is less important here. In our case we have

j5p21, ~5!

measuringj in units of the lattice constant. For diffusion o
scales smaller thanj one furthermore has in terms of th
diffusion constantD of the regular latticej2;2Dn, so that

n;
1

2Dp2
. ~6!

Given that we allow random walkers to stay at a site dur
a time step,D51/3 and thusn52/3p22. However, some
walkers do encounter shortcuts at length scales below;p21,
and numerically the crossover to a region that does not h
approximate power-law character is seen to take place ea
thann;p22.

We turn now to the analysis of this region. To be able
follow it more closely, we replot the results of Fig. 2 forL
510 000 on a semilogarithmic scale in Fig. 4. Evidently, t
decay for largern is slower than exponential.

The decay ofPn(0) is hence quicker than a power law
but slower than that for Cayley trees, for which one has~for
coordination numbers greater than 2)@21,22#

Pn~0!;n23/2exp~2Cn!, ~7!

FIG. 4. Pn(0)2P`(0) for p50.05 andL510 000 on a semi-
logarithmic scale. At longer times the decay appears to be slo
than exponential. Also shown is a fit to a stretched exponen
indistinguishable from the data.
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whereC is a constant. Comparing this behavior to that d
played in Figs. 1 and 4 we remark that in our case, fo
relatively small number of steps, the decay varies appro
mately asn2a with a*1/2, whereas at largern a more ad-
equate description would be a stretched exponen
exp(2Cnb). One may even suspect that the decay in Fig
obeys Pn(0);n2a exp(2Cnb), as also supported by th
small-world network spectral density@6#. A fit of the data in
Fig. 4 to this functional form~keepinga[0.5 fixed! is also
shown~with b50.56 andC50.04). We note that a similarly
good fit is obtained by settingb51/3 ~in line with @6#!; then
a50.1 andC50.53.

We now consider the dependence of the decay on
value ofp. For this we plot in Fig. 5 the decay lawPn(0) for
L52000 andp ranging fromp50.01 top50.8. To bring out
the stretched exponential behavior, the data for 0<n<500
are also displayed semilogarithmically in the inset. We n
that the initial power-law-like region diminishes with in
creasingp. Furthermore, the plateau regionPn(0).1/L is
reached earlier for largerp. This is in accordance with ou
argument above, that the long-range connections~shortcuts!
interrupt the simple diffusion on the underlying lattice, su
that the crossover length decreases with increasingp @cf. also

er
l,

FIG. 5. The relaxation or probability of presence at the origin
a function of the number of steps forL52000 and from upper right
to lower left p50.01, 0.05, 0.1, 0.2, 0.4, and 0.8. The data
0<n<500 are replotted semilogarithmically in the inset.

FIG. 6. Pn(0) plotted forL52000, p50.1, andk51, 2, 3, and
4, from right to left.
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Eq. ~6!#. As p becomes large enough, the power-law regi
essentially disappears. This is so because the random w
rapidly meets a shortcut. As before, the influence of fin
size effects can be reduced by plotting, as in Fig. 2,Pn(0)
2P`(0).

We have also performed simulations of the random w
on small-world networks where the underlying lattice hask
value larger than 1. In Fig. 6 we plot the results forp50.1
and L52000 in the cases ofk51, k52, k53, andk54.
The findings reproduce the general picture:Pn(0) behaves
like a power law for smalln, while decaying more rapidly a
n gets larger. The curves for differentk are mainly shifted
with respect to each other, and the network with the larg
coordination number~largestk) also displays the quickes
relaxation. It is to be noted, however, that the casek51 has
the largest dynamical range and thus best shows the d
forms, while also being the one simplest to implement; he
k51 may be the ideal small-world model.
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III. CONCLUSIONS

In this work we have studied numerically the behavior
random walks on small-world lattices. Our work has focus
on the probability of being at the initial sitePn(0) as a
function of the number of stepsn. This quantity is found to
show a complex, very interesting pattern. InitiallyPn(0) dis-
plays a power-law, ‘‘quasifractal’’ regime. At largern a
quicker decay takes over, reminiscent of stretched expon
tials. In this respect thePn(0) decay is intermediate betwee
the decays found for fractal structures and those found
treelike ~loopless! structures, exemplified here by Cayle
trees.
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